Exercise 26

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every number in its domain. State the domain.

$$
G(x)=\frac{x^{2}+1}{2 x^{2}-x-1}
$$

Solution

$G(x)$ is a rational function, and according to Theorem 5 all rational functions are continuous wherever they are defined. The denominator cannot be zero.

$$
\begin{gathered}
2 x^{2}-x-1 \neq 0 \\
(2 x+1)(x-1) \neq 0 \\
2 x+1 \neq 0 \quad \text { or } \quad x-1 \neq 0 \\
x \neq-\frac{1}{2} \quad \text { or } \quad x \neq 1
\end{gathered}
$$

Therefore, the domain of $G(x)$ is

$$
\left(-\infty,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, 1\right) \cup(1, \infty) .
$$

